计算机程序的思维逻辑 (45) - 神奇的堆
副标题[/!--empirenews.page--]
前面几节介绍了Java中的基本容器类,每个容器类背后都有一种数据结构,ArrayList是动态数组,LinkedList是链表,HashMap/HashSet是哈希表,TreeMap/TreeSet是红黑树,本节介绍另一种数据结构 - 堆。 引入堆 之前我们提到过堆,那里,堆指的是内存中的区域,保存动态分配的对象,与栈相对应。这里的堆是一种数据结构,与内存区域和分配无关。 堆是什么结构呢?这个我们待会再细看。我们先来说明,堆有什么用?为什么要介绍它? 堆可以非常高效方便的解决很多问题,比如说:
堆还可以实现排序,称之为堆排序,不过有比它更好的排序算法,所以,我们就不介绍其在排序中的应用了。 Java容器中有一个类PriorityQueue,就表示优先级队列,它实现了堆,下节我们会详细介绍。关于后面两个问题,它们是如何使用堆高效解决的,我们会在接下来的几节中用代码实现并详细解释。 说了这么多好处,堆到底是什么呢? 堆的概念 完全二叉树 堆首先是一颗二叉树,但它是完全二叉树。什么是完全二叉树呢?我们先来看另一个相似的概念,满二叉树。 满二叉树是指,除了最后一层外,每个节点都有两个孩子,而最后一层都是叶子节点,都没有孩子。比如,下图两个二叉树都是满二叉树。
编号与数组存储 在完全二叉树中,可以给每个节点一个编号,编号从1开始连续递增,从上到下,从左到右,如下图所示:
这个特点为什么重要呢?它使得逻辑概念上的二叉树可以方便的存储到数组中,数组中的元素索引就对应节点的编号,树中的父子关系通过其索引关系隐含维持,不需要单独保持。比如说,上图中的逻辑二叉树,保存到数组中,其结构为: 父子关系是隐含的,比如对于第5个元素13,其父节点就是第2个元素15,左孩子就是第10个元素7,右孩子就是第11个元素4。 这种存储二叉树的方法与之前介绍的TreeMap是不一样的,在TreeMap中,有一个单独的内部类Entry,Entry有三个引用,分别指向父节点、左孩子、右孩子。 使用数组存储,优点是很明显的,节省空间,访问效率高。 最大堆/最小堆 堆逻辑概念上是一颗完全二叉树,而物理存储上使用数组,除了这两点,堆还有一定的顺序要求。 之前介绍过排序二叉树,排序二叉树是完全有序的,每个节点都有确定的前驱和后继,而且不能有重复元素。 与排序二叉树不同,在堆中,可以有重复元素,元素间不是完全有序的,但对于父子节点之间,有一定的顺序要求,根据顺序分为两种堆,一种是最大堆,另一种是最小堆。 最大堆是指,每个节点都不大于其父节点。这样,对每个父节点,一定不小于其所有孩子节点,而根节点就是所有节点中最大的,对每个子树,子树的根也是子树所有节点中最大的。 最小堆与最大堆正好相反,每个节点都不小于其父节点。这样,对每个父节点,一定不大于其所有孩子节点,而根节点就是所有节点中最小的,对每个子树,子树的根也是子树所有节点中最小的。 我们看下图示:
总结来说,逻辑概念上,堆是完全二叉树,父子节点间有特定顺序,分为最大堆和最小堆,最大堆根是最大的,最小堆根是最小的,堆使用数组进行物理存储。 这个数据结构为什么就可以高效的解决之前我们说的问题呢?在回答之前,我们需要先看下,如何在堆上进行数据的基本操作,在操作过程中,如何保持堆的属性不变。 堆的算法 下面,我们来看下,如何在堆上进行数据的基本操作。最大堆和最小堆的算法是类似的,我们以最小堆来说明。先来看如何添加元素。 添加元素 如果堆为空,则直接添加一个根就行了。我们假定已经有一个堆了,要在其中添加元素。基本步骤为:
我们来看个例子。下面是初始结构:
从以上过程可以看出,添加一个元素,需要比较和交换的次数最多为树的高度,即log2(N),N为节点数。 这种自低向上比较、交换,使得树重新满足堆的性质的过程,我们称之为siftup。 从头部删除元素 (编辑:淮北站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |