从零转行数据分析的亲身经历
几个面试中多数面试官都会针对项目经历仔细提问,问的很细,目的在于考察自己是否真实做过项目,认真思考过问题。当然也会问道一些细节的知识点,有很多基础的问题博主并没有回答的很好,这部分还需加强只能慢慢积累了。也问了一些其他问题,比如某个机器学习算法的优缺点,给你一个应用场景,你会倾向于选择哪个模型算法来解决,再比如给你一个场景,如何进行A/B测试等问题。对于数据分析而言,机器学习和爬虫等并不是必须,但是加分项。就像博主在简历中提到用爬虫爬取链家全网数据,然后做数据分析挖掘,没想到在几个面试中都有加分。关于这部分,博主会另开一篇详细介绍。 对于最终公司的选择上肯定要考虑多方面的,待遇,发展,上升空间等。我的建议是选择公司要把眼光放长远,寻找一个好的团队,毕竟是转行,还是要以能学到东西为主。以下是几点选择公司的考虑: 大公司 or 小公司: 大公司一般规模比较大,每个岗位分得比较细,平台大,资源好,格局大。小公司一般岗位划分很粗糙,一般一个人要干所有的活儿,每个环节都能接触,进步成长速度会非常快。作为转行人员,我个人倾向于大公司,但是如果小公司有不错的机会也是可以考虑的。 风险 or 稳定: 一些初创公司的未来发展其实是很不明朗的,像很多P2P公司看起来不错,但是几个月倒闭的也比比皆是。这时候需要评估一下自己是否可以承受这种风险,高风险也就有高回报,所以很多初创公司提供的薪水才会比大公司高很多。可以尝试性的问问公司的现金流,融资情况,是否考虑上市等相关问题,来评估一下风险度。我个人倾向稳定发展的大公司,即使是初创公司最好在D轮融资之后是比较稳健靠谱的。 团队专业水平: 这个其实通过与面试官的谈话过程就能看出这个公司的技术水平怎么样,如果面试官的水平很一般,一些问题还没你清楚,那么你想想你来这能学到啥,可能薪水很高,但是你未来的价值却没有提升。 薪水高 or 薪水低: 傻子都知道薪水高好,但是还需要把握以上提到的一些原则性问题,不能因小失大。在符合自己基本标准的情况下当然薪水越高越好了。 这段时间里,博主深刻体会到转行的不易,所以把自己转行的经历给大家做了一个简单分享,希望对正在转行或者准备转行数据分析,数据挖掘方向的朋友们有所帮助。一句话,坚持就是胜利。 【编辑推荐】
点赞 0 (编辑:淮北站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |